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Introduction	

Interest	in	quantifying	and	monitoring	the	content	and	stock	of	organic	carbon	in	soil	arises	from	the	
beneficial	contributions	it	makes	to	the	productivity,	resilience	and	sustainability	of	the	soil	resource	
(Murphy,	2015;	Hoyle	et	al.,	2011;	Baldock	and	Skjemstad,	1999)	and	because	increases	in	the	stock	
of	soil	organic	carbon	can	mitigate	emissions	of	greenhouse	gases	(Baldock	et	al.,	2012).		Land	use	
and	land	use	change	may	induce	a	sequestration	or	emission	of	carbon	depending	on	the	balance	
between	carbon	additions	(CA)	derived	from	plant	growth	or	the	addition	of	organic	amendments	
and	losses	associated	with	the	mineralisation	of	organic	materials	during	decomposition	(CM)	or	
material	transfers	associated	with	erosion	(CE)	or	leaching	(CL)	as	delineated	by	Baldock	(2007)	
(Equation	[1]).		Initiating	agricultural	production	has	typically,	but	not	always,	resulted	in	net	losses	
of	soil	organic	carbon	accounting	for	between	20-70%	of	the	carbon	stocks	originally	present	(Luo	et	
al.,	2010;	Lal,	2004).		However,	the	introduction	of	soil	carbon	friendly	management	strategies	
including	soil	conservation	programs,	reduced	tillage,	residue	retention	and	increased	productivity	
have	resulted	in	reductions	in	the	magnitude	of	soil	carbon	loss	(avoided	emissions)	or	increases	in	
carbon	stock	(sequestration)	(Hutchinson	et	al.,	2007;	Sanderman	et	al.,	2010).			
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Figure	1.		Relative	changes	in	the	rate	of	soil	carbon	stock	change	induced	by	the	adoption	of	carbon	
friendly	management	strategies:	(a)	for	Australia	(Sanderman	et	al.,	2010)	and	(b)	internationally	
(Hutchinson	et	al.,	2007)		Note	that	in	almost	all	cases	the	data	presented	in	these	two	reviews	
represent	the	difference	between	invoking	or	not	invoking	the	carbon	friendly	management	practice	
at	a	single	point	in	time.		Thus	the	rates	of	soil	carbon	stock	change	are	relative	and	could	result	
from	an	avoided	emission,	sequestration	or	a	combination	of	both.	 	



	

	

Soil	information	that	informs	carbon	management	and	tracks	the	carbon	stock	and	change	has	
challenged	traditional	soil	information	systems.		In	this	paper,	we	examine	the	experience	in	
Australia	in	integrating	information	approaches	from	the	point	observation	to	continental	
estimations	and	highlight	the	combined	role	of	measurement,	modelling	and	estimation	and	
monitoring	systems.		Here	we	propose	that	a	comprehensive	system	has	components	that	interlink	
to	provide	complete	information	support	for	soil	carbon	management.		The	components	are:	

• Sampling	and	measurement	at	soil	sampling	sites	chosen	to	represent	environmental	and	
management	variability	and	that	allows	repeat	analysis	(the	point	of	truth);	

• Modelling	of	the	soil-plant-management	system	to	predict	change	in	soil	carbon	stocks	over	
time;	

• 	Spatial	interpolation	of	site	data	(with	relevant	environmental	covariates)	to	produce	the	
‘baseline’	maps	of	soil	carbon	stocks;	

• Spatial	interpolation	of	soil	site	data	of	relevance	to	soil	carbon	prediction	(with	relevant	
environmental	covariates)	to	produce	a	soil	functions	map;	

• Integration	of	the	soil	maps	with	modelling	to	allow	prediction	and	exploration	between	
observation	sites	and	over	time;	and	

• Integration	of	remote	and	proximal	sensing	to	allow	key	dynamics	of	the	production	system	
to	be	modelled	and	management	systems	refined.		

It	is	important	to	also	note	that	the	creation	of	such	a	comprehensive	information	system	for	soil	
carbon	will	have	multiple	additional	uses	including	predictions	of	agricultural	production	outcomes	
that	can	then	lead	on	to	provide	important	economic	information	at	scales	ranging	from	individual	
farm	businesses	through	to	continents.	

Point	source	soil	carbon	data	

The	point	of	truth	(in	space	and	time)	of	soil	carbon	stocks	is	obtained	from	individual	soil	
measurements	obtained	from	samples	extracted	from	cores	or	soil	pits	(sensing	approaches	show	
promise	but	are	not	yet	operational	and	will	inevitably	be	calibrated	back	against	measured	stocks).	
Calculating	the	stock	of	organic	carbon	at	a	soil	sampling	site	requires	measurement	of	the	following	
soil	properties	according	to	Equation	[2]:		

• organic	carbon	content	of	air	dried	<2mm	sieved	soil	(Corg,	AD;	g	OC/kg	air	dry	<2mm	soil),		
• gravimetric	water	content	of	air	dried	<2mm	sieved	soil	(qm,	AD;	kg	air	dry	<2mm	soil/kg	oven	

dry	<2mm	soil),		
• dry	soil	bulk	density	(BD;	Mg	OD	soil/m3	soil),		
• thickness	of	the	soil	layer	sampled	(T;	cm),	and		
• gravimetric	proportion	of	soil	mass	present	as	>2mm	gravel	(Pgrav)	to	calculate	the	

proportion	of	soil	<2mm	(1-Pgrav,	kg	oven	dry	<2mm/kg	oven	dry	soil).			
A	conversion	factor	of	0.10	allows	expression	of	the	value	of	organic	carbon	stock	in	Mg	C/ha.			

	 ( ) ( )gravm,ADstock org,AD 1 P1OC OC BD T 0.10-+q= ´ ´ ´ ´ ´ 		 [2]	

On	examination	of	the	Australian	National	Soils	Database	in	2012,	of	the	
55,342	soil	samples	included,	only	12,418	(22%)	had	measured	values	for	
organic	carbon	contents.	When	the	data	requirement	was	extended	to	
include	all	parameters	identified	in	Equation	[2],	only	1045	(2%)	had	the	
required	values	and	of	those	a	significant	proportion	were	from	unmanaged	
systems	or	from	agricultural	systems	prior	to	the	year	2000.		In	response,	the	



	

	

Australian	government	established	a	Soil	Carbon	Research	Program	(SCaRP)	
within	its	Climate	Change	Research	Program	to	quantify	soil	carbon	stocks	
within	Australia’s	managed	agricultural	lands.		The	program	collected	and	
analysed	over	4,500	agricultural	soil	profiles	(Modelling	soil	carbon	change	

Within	the	soil	component	of	Australia’s	National	Greenhouse	Gas	Inventory	(NGGI)	soil	carbon	
stock	change	is	estimated	within	the	FullCAM	modelling	framework	(Richards,	2001),	using	an	
approach	based	on	the	RothC	soil	carbon	simulation	model	(Jenkinson,	1990;	Jenkinson	et	al.,	1987).		
The	NGGI	modelling	framework	differs	from	the	original	RothC	approach	in	that	the	original	
conceptual	pools	of	soil	carbon	were	replaced	by	a	series	of	measureable	fractions	of	soil	organic	
carbon	referred	to	as	particulate,	humus	and	resistant	organic	carbon	(POC,	HOC	and	ROC,	
respectively)	and	the	decomposition	rate	constants	were	adjusted	where	required	to	account	for	
this	substitution	(Skjemstad	et	al.,	2004)	(Figure	3).	

In	the	SCaRP,	the	fractionation	protocol	developed	by	Skjemstad	et	al.	(2004)	was	varied	to	account	
for	the	presence	of	resistant	organic	carbon	within	coarse	soil	particles	(Baldock	et	al.,	2013b)	(Error!	
Reference	source	not	found.)	and	then	applied	to	312	soils.		The	fractionation	process	is	both	time	
consuming	and	requires	non-routine	specialised	equipment	(e.g.	a	solid-state	13C	nuclear	magnetic	
resonance	spectrometer).		To	facilitate	extension	and	possible	use	of	the	fractions	within	the	
agricultural	industry,	the	potential	to	predict	allocations	of	soil	carbon	to	its	component	fractions	by	
mid-infrared	spectroscopic	analysis	was	developed.		Reasonable	estimates	of	the	contents	of	each	
soil	carbon	fraction	could	be	obtained	from	one	mid-infrared	analysis	(Baldock	et	al.,	2013a).	 	



	

	

	

Figure	2a)	to	a	depth	of	30cm	and	calculated	the	0-30	cm	soil	carbon	stocks	using	measured	values	
for	all	parameters	in	Equation	[2]	(Baldock	et	al.,	2013a).	

The	collection	of	the	SCaRP	dataset	has	established	baseline	values	for	soil	organic	carbon	stocks	
across	much	of	Australia’s	intensive	agricultural	zone,	at	each	of	the	sites	sampled	and	at	the	time	
sampled.		Second	and	subsequent	sampling	is	needed	begin	quantifying	changes	in	soil	carbon	



	

	

stocks.		However,	the	distribution	of	soil	organic	carbon	stocks	within	regions	experiencing	variations	
in	environmental	conditions	(e.g.	average	annual	rainfall,	Figure	2b),	as	well	as	those	between	
management	practices	within	regions	(e.g.	grazing	strategy	applied	to	pastures,	Figure	2c)	can	
provide	useful	information.		Although	a	wide	range	of	soil	organic	carbon	stocks	were	obtained	for	
each	region	in	Figure	2b,	a	shift	in	the	distribution	towards	higher	values	within	increasing	average	
annual	rainfall	was	evident.		In	Figure	2c,	the	two	distributions	of	soil	organic	carbon	stocks	obtained	
under	rotational	and	set	stocking	grazing	regimes	could	not	be	differentiated	amid	the	significant	
variation	in	stocks	existing	within	each	management	practice	(ranging	from	approximately	15	–	70	
Mg	C/ha).		Variations	in	soil	type,	climate	and	topographic	properties	within	the	region	contributed	
to	the	range	of	soil	organic	carbon	stocks	measured;	however,	differences	in	the	way	individual	
landowners	implement	practices	in	response	to	personal	preferences	or	business	requirements	were	
also	found	to	contribute.	

The	SCaRP	sampling	showed	that,	even	within	particular	management	practices,	the	dynamics	of	
carbon	inputs	and	losses	led	to	large	variations	that	made	general	conclusions	difficult.		There	is	
potential	to	look	for	other	aggregations	that	better	reflect	carbon	dynamics,	e.g.	the	net	primary	
productivity	achieved	by	land	managers	in	response	to	their	environment	and	the	particular	
management	options	they	employ.	

While	the	SCaRP	sites	do	not	map	carbon	stocks,	the	regional	distributions	of	soil	organic	carbon	
stock	offer	farmers	the	potential	to	place	their	own	values	in	context	with	those	of	others.		This	can	
be	useful	in	defining	the	potential	for	them	to	enhance	soil	carbon	stocks	on	their	own	lands.			

	

Modelling	soil	carbon	change	

Within	the	soil	component	of	Australia’s	National	Greenhouse	Gas	Inventory	(NGGI)	soil	carbon	
stock	change	is	estimated	within	the	FullCAM	modelling	framework	(Richards,	2001),	using	an	
approach	based	on	the	RothC	soil	carbon	simulation	model	(Jenkinson,	1990;	Jenkinson	et	al.,	1987).		
The	NGGI	modelling	framework	differs	from	the	original	RothC	approach	in	that	the	original	
conceptual	pools	of	soil	carbon	were	replaced	by	a	series	of	measureable	fractions	of	soil	organic	
carbon	referred	to	as	particulate,	humus	and	resistant	organic	carbon	(POC,	HOC	and	ROC,	
respectively)	and	the	decomposition	rate	constants	were	adjusted	where	required	to	account	for	
this	substitution	(Skjemstad	et	al.,	2004)	(Figure	3).	

In	the	SCaRP,	the	fractionation	protocol	developed	by	Skjemstad	et	al.	(2004)	was	varied	to	account	
for	the	presence	of	resistant	organic	carbon	within	coarse	soil	particles	(Baldock	et	al.,	2013b)	(Error!	
Reference	source	not	found.)	and	then	applied	to	312	soils.		The	fractionation	process	is	both	time	
consuming	and	requires	non-routine	specialised	equipment	(e.g.	a	solid-state	13C	nuclear	magnetic	
resonance	spectrometer).		To	facilitate	extension	and	possible	use	of	the	fractions	within	the	
agricultural	industry,	the	potential	to	predict	allocations	of	soil	carbon	to	its	component	fractions	by	
mid-infrared	spectroscopic	analysis	was	developed.		Reasonable	estimates	of	the	contents	of	each	
soil	carbon	fraction	could	be	obtained	from	one	mid-infrared	analysis	(Baldock	et	al.,	2013a).	 	



	

	

	

Figure	2.		(a)	Location	of	0-30cm	soil	profiles	included	in	SCaRP.	(b)	Frequency	distributions	of	0-
30cm	soil	carbon	stocks	within	each	of	three	regions	across	a	rainfall	gradient	in	NSW.		(c)	Frequency	
distributions	of	0-30	cm	soil	carbon	stocks	under	two	different	management	regimes	within	a	single	
region	of	NSW.	

	 	



	

	

	

	

Figure	3.		Relationship	between	measured	and	predicted	stocks	of	soil	carbon	fractions	(Skjemstad	et	
al.,	2004).	

	

	

	

Figure	4.		Soil	carbon	fractionation	procedure	developed	and	used	within	the	SCaRP	(Baldock	et	al.,	
2013b).		TC	=	total	carbon,	OC	=	organic	carbon,	IC	=	inorganic	carbon,	POC	=	particulate	organic	
carbon,	HOC	=	humus	organic	carbon,	ROC	=	resistant	organic	carbon.			

	 	



	

	

In	response	to	the	development	of	this	prediction	capability	from	acquired	MIR	spectra,	predictions	
of	the	allocation	of	soil	carbon	to	the	entire	set	of	SCaRP	soils	occurred	and	Viscarra	Rossel	and	Hicks	
(2015)	extended	the	approach	to	visible-near	infrared	spectroscopic	analysis.		Modelling	of	change	
in	the	fractions	of	soil	carbon	is	now	being	integrated	into	the	NGGI.	

Given	the	importance	of	agricultural	practices	in	the	management	of	soil	carbon,	particularly	the	
importance	of	carbon	inputs	from	crops	and	pastures	and	its	relationship	with	productivity,	a	more	
complete	agricultural	systems	model	capable	of	predicting	crop	and	pasture	growth	and	response	to	
management	is	required.		The	APSIM	modelling	suite	(Holzworth	et	al.,	2014)	is	being	modified	to	
use	the	developments	in	soil	carbon	fractions	and	provides	an	effective	link	to	agricultural	
management.	

	

Using	point	data	to	derive	spatial	maps	of	soil	carbon	stocks.			

The	Australian	soil	carbon	stock	map	is	a	fine-scaled	grid	of	the	continent	with	estimates	of	soil	
carbon	in	each	grid	cell	with	an	accompanying	estimate	of	uncertainty.		To	produce	this	map	using	
data	from	a	confined	time	slice,	the	directly	measured	soil	carbon	data	from	4125	SCaRP	sites	
(Baldock	et	al.,	2013a)	were	supplemented	with	1101	soils	within	the	National	Geochemical	Survey	
of	Australia	(de	Caritat	et	al.,	2008)	(values	were	predicted	using	visible-near	infrared	spectroscopy	
(Viscarra	Rossel	and	Webster,	2012)	and	491	soils	extracted	from	the	Australian	Soil	Resource	
Information	System	(Johnston	et	al.,	2003)	(Figure	5a).		After	harmonising	the	three	data	sources	to	
produce	consistent	estimates	of	0-30cm	soil	organic	carbon	stocks,	the	data	mining	algorithm	
CUBIST	(Quinlan,	1992)	was	used	to	derive	models	capable	of	predicting	soil	organic	carbon	stocks	
from	a	series	of	34	covariates	with	national	coverage	(Viscarra	Rossel	et	al.,	2014).		The	covariates	
included	were	related	to	soil	parent	material,	climate,	topography	and	vegetation.		The	optimised	
solution	consisted	of	14	different	rule	sets	that	used	different	combinations	of	the	covariates	to	
predict	of	0-30cm	soil	organic	carbon	stocks	at	various	locations	across	Australia.		These	rule	sets	
were	then	applied	to	the	covariate	data	to	produce	a	map	of	0-30	cm	soil	organic	carbon	stocks	for	
Australia	(Figure	5b).		In	addition,	a	bootstrapping	method	was	used	to	generate	the	uncertainty	
associated	with	each	predicted	soil	organic	carbon	stock.		The	uncertainties	were	expressed	as	the	
range	of	the	95%	confidence	intervals	divided	by	their	mean	(Figure	5c).	The	largest	standardised	
uncertainty	corresponded	to	the	locations	with	low	frequencies	of	measured	data.	

	

The	Soil	and	Landscape	Grid	of	Australia	

The	application	of	models	and	related	tools	in	the	use	of	the	soil	carbon	map	requires	a	broader	soil	
and	environmental	data	set.		That	has	been	provided	by	the	generation	of	the	Soil	and	Landscape	
Grid	of	Australia	(SLGA)	(Grundy	et	al.,	2015).		Using	similar	approaches	as	well	as	new	methods	to	
disaggregate	existing	soil	maps	(Odgers	et	al.,	2015),	a	fine	scale	grid	(3	arc-seconds	or	
approximately	90	x	90	m	pixels)	of	soil,	terrain	and	solar	radiation	data	has	been	developed	and	
published	and	is	publicly	available	in	an	easily-accessible	format	
(http://www.clw.csiro.au/aclep/soilandlandscapegrid/).		In	the	case	of	soil	data,	a	minimum	data	set	
of	functional	attributes	suitable	for	pedotransfer	functions	has	been	estimated	and	to	depths	up	to	
2m.		The	Grid	is	the	essential	underpinning	step	in	a	broader	soil	information	system;	its	first	
application	in	soil	carbon	inventory	has	been	to	allow	spatial	modelling	from	the	soil	carbon	
baseline.	 	



	

	

	

Figure	5.		(a)	Locations	of	the	soil	profile	data	used	in	the	creation	of	the	Australian	0-30	soil	organic	
carbon	stock	map.		(b)	Predicted	spatial	distribution	of	Australian	0-30cm	soil	organic	carbon	stocks	
in	2010.	(c)	Standardised	uncertainty	estimates	expressed	as	the	size	of	the	95%	confidence	interval	
divided	by	the	mean	predicted	value	(Viscarra	Rossel	et	al.,	2014).	

	

Use	of	the	0-30	cm	soil	organic	carbon	map	within	Australia’s	National	
Greenhouse	Gas	Inventory.	

Together	with	the	modelling	capacity	embedded	in	FULLCAM	and	other	soil	attributes	in	the	SLGA,	
the	soil	carbon	map	developed	by	Viscarra	Rossel	et	al.	(2014)	(Figure	5)	is	now	being	used	in	
conjunction	with	the	original	soil	carbon	fraction	allocations	provided	to	the	NGGI	in	2003	
(Skjemstad	and	Spouncer,	2003)	to	predict	changes	in	Australia’s	soil	carbon	stocks.		In	addition,	the	
process	of	generating	separate	maps	for	the	stocks	of	the	POC,	HOC	and	ROC	fractions	has	been	
initiated	and	it	is	expected	that	the	next	NGGI	account	will	use	these	new	and	more	detailed	and	
spatially	explicit	allocations	to	obtain	improved	estimates	of	organic	carbon	stock	changes	in	
Australian	soils.			

	

Modelling	the	full	system:	combining	the	soil	grid	maps	with	agricultural	
production	models.	

Beyond	the	inventory	of	soil	carbon	stocks,	land	managers	and	decision	makers	need	to	understand	
and	explore	options	to	better	manage	soil	carbon	stocks	and	changes.		The	SLGA	was	designed	with	
this	potential	in	mind	and	the	initial	integration	of	the	SLGA	data	with	the	APSIM	model	is	in	place.	
APSIM	requires	a	range	of	data	defining	the	soil	conditions	at	a	location	to	be	modelled	(e.g.	soil	



	

	

carbon	and	nitrogen	stocks,	bulk	density,	water	holding	capacity)	expressed	in	the	parameter	forms	
required	by	the	model.		Some	of	the	required	inputs	can	be	derived	directly	from	the	spatial	data	
layers	contained	within	the	SLGA	(e.g.	the	soil	moisture	characteristic),	whilst	others	can	be	
estimated	through	the	construction	of	pedotransfer	functions	using	data	contained	within	the	SLGA	
(e.g.	saturated	hydraulic	conductivity).		The	first	implementation	of	this	model	parameter	grid	has	
been	developed	and	is	being	tested,	with	promising	results	(Searle	pers	comm.).	

Figure	6	provides	an	example	of	how	the	SLGA	data	can	be	used	quantify	the	wheat	yields	across	the	
Australian	wheat	belt.		In	this	example,	measured	wheat	yields	were	available	at	all	the	locations	
(red	dots)	indicated	within	the	Australian	wheat	belt	(green	shaded	region)	(Figure	6a).		The	soil	
properties	required	to	run	APSIM	were	extracted	or	calculated	from	data	residing	within	the	SLGA	
for	each	location.		The	wheat	yields	predicted	by	APSIM	strongly	related	to	the	measured	values	
(LCCC=0.85	and	R2=0.79)	(Figure	6b).		Given	the	continuous	spatial	nature	of	the	SLGA	soil	data,	this	
finding	demonstrates	the	possibility	to	1)	provide	predictions	of	wheat	yields	under	defined	climatic	
conditions	or	2)	derive	cumulative	probability	distributions	defining	the	risk	associated	with	
obtaining	a	given	yield	at	any	point	across	Australian	wheat	belt.		Although	the	example	presented	
describes	the	ability	of	SLGA	data	to	inform	yield	modelling,	the	soil	and	landscape	attributes	
contained	with	the	SLGA	may	be	linked	in	a	similar	way	to	provide	estimates	of	other	properties.		For	
example,	the	calculation	of	net	acid	addition	rates	derived	from	applied	agricultural	production	
systems,	how	this	interacts	with	soil	buffer	capacity	(predicted	through	a	pedotransfer	function)	to	
define	the	rate	of	acidification	of	agricultural	soils,	and	the	rate	of	lime	addition	required	to	maintain	
soil	pH	within	acceptable	limits.		More	generally,	the	capacity	of	management	systems	to	optimise	
productivity	and	therefore	soil	carbon	dynamics	can	be	modelled	and	options	explored.	

	

	

	

Figure	6.		Linking	fine	scale	spatial	data	to	our	crop	production	modelling.	(a)	Red	dots	show	the	
locations	where	measured	wheat	yields	were	available	within	the	Australian	wheat	belt	(green	
shaded	area).		(b)	The	correspondence	between	yields	predicted	by	APSIM	using	the	soil	data	
extracted	from	the	SLGA	and	actual	measured	yields	for	wheat.			

	 	



	

	

Moving	to	decisions	in	real	time:	connecting	spatial	crop	modelling	to	real	
time	streams	of	data	

While	the	integration	of	models	with	soil	carbon	and	other	data	provides	an	increased	ability	to	
observe	and	test	the	dynamics	of	management	systems,	the	underlying	soil	information	is	essentially	
static	and	time	bound.		The	development	of	model	data	fusion	approaches	to	soil	function	(e.g.	
Barrett,	2010)	offers	the	opportunity	to	estimate	the	fluxes	in	the	key	soil	functions	(moisture,	
carbon,	nitrogen)	and	move	to	a	more	immediate	management	of	soil	carbon	dynamics.		Current	
projects	in	this	space	are	now	focussed	on	the	building	the	link	to	real	time	streams	of	data	
(proximal	and	remote	sensing	systems)	and	connecting	to	the	prediction	system.		Such	a	capability	
allows	the	potential	to	understand	the	manage	the	variance	of	yield	outcomes	as	a	growing	season	
progresses	and	allow	land	managers	to	make	more	informed	management	decisions	pertaining	to	
potential	crop	yields	and	soil	carbon	dynamics.			

	

Making	the	capabilities	and	data	available	to	land	managers	

While	the	developments	in	soil	information	outlined	here	promise	an	increasingly	detailed	and	
focussed	information	support	for	soil	carbon	management,	the	volume	and	complexity	of	data	also	
increase.		The	challenge	to	ensure	that	this	enables	more	effective	management	is	at	least	as	
important	as	the	development	of	the	information	system	itself.		This	is	likely	to	involve	the	
application	of	new	tools	in	information	management	and	application	–	locally	relevant	and	simple	
apps	and	decision	tools.		A	current	example	of	such	a	system	is	the	SOILWATER	application	that	can	
be	run	off	computers,	tablets	and	smart	phones	so	that	land	managers	can	access	soil	water	
information	when	and	where	it	is	required.		It	is	likely	that	this	decision	support	element	will	evolve	
quickly	as	the	information	capacity	grows.			

	

Assembling	a	more	complete	data/modelling/prediction	system	that	can	
evolve	

Once	the	linkages	between	data	(e.g.	SLGA),	models	(e.g.	APSIM)	and	real	time	data	sensors	(e.g.	
remotely	sensed	data)	are	established,	development	of	a	capability	that	allows	continuous	
improvement	of	the	predicted	outcomes	can	occur.		An	example	of	this	is	provided	in	Figure	7	using	
the	ability	to	predict	soil	carbon	stocks	and	stock	change	as	an	example.		Component	(a)	contains	the	
data	defining	current	soil	carbon	state	(e.g.	stocks,	fractions,	etc.)	and	equates	to	the	information	
that	would	be	housed	within	the	SLGA.		The	data	from	this	component	is	used	to	define	the	initial	
conditions	used	in	subsequent	modelling.		Component	(b)	defines	the	temporal	inputs	of	carbon	
from	plants	to	the	soil	and	is	required	to	estimate	the	likely	outcomes	of	management	practices	on	
soil	carbon	stocks.		Data	pertaining	to	plant	inputs	can	come	from	a	variety	of	sources	(direct	
measurement,	simple	or	complex	models	or	sensing).		Component	(c)	is	the	biophysical	model	that	
predicts	the	likely	outcome	of	an	applied	management	practice	given	the	defined	starting	conditions	
and	inputs.		The	model	may	be	simple	or	complex,	but	in	either	case	it	will	contain	algorithms	with	
various	constants	that	require	calibration.		Component	(d)	represents	the	model	output	designed	to	
provide	useful	information	to	land	managers.		For	the	soil	carbon	example,	useful	outputs	could	take	
form	of	the	following:	



	

	

1. a	national	map	of	predicted	soil	carbon	stocks	and	the	associated	uncertainty	at	some	point	
in	the	future	for	policy	makers,	particularly	those	considering	the	design	of	an	emission	
trading	system	and	potential	volume	of	emission	abatement	that	may	occur,	

2. a	cumulative	probability	distribution	of	the	outcome	of	applying	a	particular	management	
practice	on	soil	carbon	stocks	at	a	particular	location	to	inform	the	land	manager	of	the	
potential	risks	associated	with	obtaining	a	specified	stock	change.	

3. a	series	of	trajectories	of	potential	soil	carbon	changes	associated	with	the	application	of	
different	management	practices.	

Component	(e)	provides	a	mechanism	for	using	the	available	data	to	test	and	revise	the	magnitude	
of	the	model	parameters	in	a	Bayesian	Hierarchical	Modelling	approach	as	discussed	by	Clifford	et	al.	
(2014).		Component	(f)	provides	a	mechanism	to	include	algorithms	to	shift	plant	production	in	
response	to	increased	soil	carbon	values	and	thus	provide	a	feedback	that	is	absent	from	most	
modelling	systems.			

	

	

Figure	7.		Conceptualisation	of	a	complete	data/modelling/prediction	system	for	soil	organic	carbon	
stocks	with	the	ability	to	evolve	and	provide	improved	predictions	through	time	as	additional	data	
and	refinements	are	made.		Blue	arrows	represent	the	direction	of	flow	of	information.		Orange	
arrows	represent	feedbacks	where	1)	model	outcomes	can	be	used	to	improve	inputs	and	2)	tuning	
of	model	parameters	is	possible.	
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