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Highlights	of	the	quantification	approach:	

• Up-scaling	of	the	SOC-related	dynamics	and	processes	from	on-site	measurements/observations	
to	wider	defined	spatial	and	temporal	domains	(countries,	regions,	global)	

• Linking	observed	common	practices	with	theoretical	land	and	soil	management	scenarios	
applied	for	formulating	and	testing	of	regional	policies	

• Adding	spatial	quantities	to	SOC	balance	at	regional	scales	as	opposed	to	site-specific	SOC	
quantification	focusing	more	on	quality	of	the	processes	and	their	results	

• Introducing	spatial	variability	of	the	SOC	balance	and	its	drivers	for	exploring	the	
options/impacts	of	sustainable	SOC	management	in	large	scale	studies	(regional	to	global)	

• Adding	complexity	to	SOC	balance	modelling	directly	quantifying	impact	of	wide	range	of	
measurable	management	options	within	the	particular	spatial	context	

• Neglects	many	important	details/processes	of	organic	carbon	cycling	present	at	local	scale	on	
exchange	for	wider	spatial	extent	and	attribute	complexity	of	the	simulation	outputs	

	 	



	

	

Regional	or	gridded	modelling	is	commonly	used	approach	to	quantification	variety	of	SOC/GHG	
processes,	their	drivers	and	outcomes	at	regional	or	global	scales	(e.g.	Wang	et	al	2016,	Gottshalk	et	al.	
2012,	Easter	et	al.	2007,	Smith	et	al.	2005).	

Gridded	version	of	EPIC	model	being	developed	and	used	at	IIASA	(Balkovic	et	al.	2013,	Balkovic	et	al	
2014,	Folberth	et	al.	2012)	couples	bio-physical	agroecosystem	model	EPIC	(Williams	1995)	including	the	
SOC	routine	implemented	by	Izaurralde	et	al.	(2012)	with	the	spatial	data	on	climate,	soil,	topography,	
land	cover,	and	land	use	harmonized	and	organized	within	the	regular	grid	(Skalsky	et	al.	2008,	Balkovic	
et	al	2007).	Gridded	EPIC	enables	for	up-scaling	important	bio-physical	processes	and	management	
impacts	from	local	to	larger	scales	(national,	regional,	or	global)	providing	at	output	spatially	explicit	and	
quantitative	estimates	on	variety	of	landscape	qualities	such	as	biomass	production,	water	and	nutrient	
cycling,	or	environmental	impacts	of	agricultural	systems	(soil	erosion,	nutrient	leaching);	precision	of	
the	results	depending	on	the	input	data	and	regional	model	calibrations	(Balkovic	et	al.	2013,	Balkovic	et	
al	2014,	Xiong	et	al.	2014,	2016,	Ma	et	al.	2016,	van	der	Velde	at	al.	2014,	van	Oijen	et	al.	2014).		

Spatial	estimates	from	gridded	EPIC	can	feed	to	many	practical	applications	such	as	SOC/GHG	mitigation	
policy	impact	studies	(e.g.	Frank	et	al	2014,	Elshout	et	al.	2015,	Havlik	et	al.	2011,	Schneider	et	al.	2011).	
It	provides	precise	enough	data	for	regional	or	global	studies,	yet	the	use	of	the	gridded	outputs	could	
be	not	precise	enough	(both	in	spatial	and	attribute	meaning)	for	other	applications	having	their	focus	
on	site-level	processes	and	relationships.	

	



	

	

Fig.	1	Scatter	plots	with	means	and	±	one	SD	of	simulated	versus	observed	regional	yields	for	EU	regions	(average	of	1997-2007)	
for	(a)	winter	wheat,	(b)	spring	barley,	(c)	maize,	and	(d)	winter	rye	(Source:	Balkovic	et	al.	2013)	

When	compared	to	observations	or	measurements	gridded	EPIC	can	provide	robust	and	accurate	
estimates	for	larger	regions	(Fig.	1);	also	reflecting	well	inter-annual	variability	patterns	of	simulated	
agroecosystem	qualities	changing	with	main	drivers	such	as	climate	or	crop	management	(e.g.	Balkovic	
et	al.	2013,	Balkovic	et	al	2014).		

Specific	problem	of	the	model	accuracy	check	is	the	lack	of	appropriate	observations	and	measurements	
for	many	landscape	qualities	other	than	biomass	production	(water	and	SOC	dynamics,	nutrient	content,	
etc.)	not	allowing	for	proper	accuracy	assessment	of	the	gridded	outputs	(e.g.	van	der	Velde	et	al.	2014,	
Ma	et	al	2016).	

The	gridded	EPIC	performance	closely	relates	to	manifold	biases	coupled	with	spatial	data	used	to	run	
the	model	which	can	generate	high	uncertainty	in	the	simulation	results.	Knowing	not	exactly	the	crops	
and	crop	types	(cultivars),	nutrients	and	water	inputs,	or	planting/harvesting	dates	can	result	in	many	
possible	estimates	of	crop	production	with	observed	value	somewhere	within	the	simulated	theoretical	
range	(Fig.	2,	Balkovic	et	al.	2013).	

	

Fig.	2	Relationships	between	simulated	maize	yields	and	N-fertilizer	application	rates	for	different	maize	varieties	(v.	100	–	early	
maize,	v.	155	–	medium-early	maize,	and	v.	180	–	late	maize)	and	different	irrigation	intensities	(λr	from	0	to	1,	with	0.2	
increments,	double-arrow	denotes	the	λ	range	for	v.	180);	triangle	represent	maize	yield	realization	used	in	the	EU	EPIC	
implementation;	horizontal	arrow	denotes	EUROSTAT	reported	yields	(Source:	Balkovic	et	al.	2013)	

Representation	of	key	landscape	and	land	management	elements	(qualities	and	their	spatial	
representation)	in	the	gridded	data	infrastructure	(e.g.	Skalsky	et	al.	2008,	Balkovic	et	al.	2007),	as	well	
as	their	mutual	relationships	at	given	scale	can	significantly	add	to	produced	uncertainty	of	spatial	
estimates.	Study	of	Folberth	et	al.	(2016)	shows	that	with	global	gridded	EPIC	runs	for	maize	system	
under	the	projected	climate	change	an	unambiguous	cropland	allocation	can	result	in	significantly	
different	crop	yield	estimates	for	alternative	soil	types.	This	applies	specifically	for	SOC	dynamics	studies	



	

	

where	initial	SOC	stock	should	be	properly	allocated	within	the	respective	land	cover	classes	to	limit	the	
uncertainties	of	the	model	outputs	(e.g.	Ma	et	al.	2016,	Frank	et	al.	2014).	

Spatial	coverage	of	the	gridded	EPIC	can	theoretically	range	from	farm	to	global	scales	reflecting	the	
purpose	of	the	modelling;	with	the	EPIC	model	being	currently	available	at	IIASA	for	EU	(Balkovic	et	al.	
2013),	Sub-Saharan	Africa	(Folberth	et	al	2012,	2014),	and	global	(Balkovic	et	al.	2014)	set-ups.	

Gridded	modeling	approach	implicitly	reflects	that	quantification	happens	over	a	pre-defined	spatial	
domain	and	implicitly,	the	coverage	depends	on	the	spatial	domain	selection	(region,	global).	This	is	
clearly	opposed	to	any	site-	or	point-based	quantification	approaches	with	the	‘coverage’	likely	being	
one	of	the	main	added	values	of	the	gridded	modelling	to	the	SOC	quantification.	

	

Fig.	3	Limited	spatial	resolution	of	gridded	EPIC	model	–	an	image	of	‘real’	cropland	with	variable	soil	characteristics	(La	–	Albic	
Luvisols,	FLmo	–	Mollic	Fluvisols),	different	land-cover	patches	and	different	land	uses	juxtaposed	to	a	‘representative’	field,	
which	reflects	available	data	at	given	scale	with	likely	site	conditions	and	management,	and	field	impacts	uniformly	
extrapolated	to	the	entire	simulation	unit	(Source:	Balkovic	et	al	2007)	

Setting	up	gridded	data	infrastructure	requires	complex	approach	to	harmonize	and	organize	all	
necessary	spatial	inputs	(e.g.	Skalsky	et	al.	2008,	Balkovic	et	al.	2007).	But	at	some	point	it	is	not	possible	
anymore	to	process	the	data	in	such	a	spatial,	temporal,	or	attribute	detail	which	could	fully	satisfy	all	
the	SOC	quantification	needs.	Spatial	data	infrastructure	becomes	then	rather	an	approximation	then	a	
full	landscape	variability	representation	(Fig.	3)	with	e.g.	replacing	full	variability	of	slopes	or	soil	types	
presented	with	only	dominant	one	(e.g.	Skalsky	et	al	2008,	Balkovic	et	al	2007).	Other	possible	way	how	
to	secure	some	reasonable	landscape	variability	in	the	spatial	data	infrastructure	is	to	use	alternative	
classes	to	mimic	real	landscape	variability	in	the	outputs	(e.g.	Folberth	et	al.	2016).	

	



	

	

Fig.	4	Spatial	and	geo-coded	information	used	in	global	gridded	EPIC	spatial	data	infrastructure	to	handle	the	landscape	
variability	beyond	the	spatial	resolution	of	the	simulation	units;	PX30	–	30	arcmin	resolution	grid,	HRU	–	Homogenous	Response	
units	–	a	grouping	of	5	arcmin	resolution	gridcells	based	on	altitude,	slope	and	soil	texture	classification,	COUNTRY	–	country	
borders,	STU	–	soil	typological	units	delineated	on	soil	map,	and	SimU	–	simulation	units	–	a	grouping	of	the	gridcells	providing	
direct	spatial	reference	for	running	the	gridded	simulations	(Source:	Skalsky	et	al.	2008).	

Spatial	resolution	of	the	gridded	model	can	be	user	defined	and	depends	on	the	purpose.	With	gridded	
EPIC	developed	at	IIASA	the	spatial	resolution	ranges	from	1k	to	5/30	arc	min	spatial	resolution	with	
regional	or	global	setup,	respectively	(Balkovic	et	al.	2013,	Balkovic	et	al.	2014,	Skalsky	et	al.	2008,	
Balkovic	et	al	2007).	Some	landscape	qualities	with	high	spatial	detail	such	as	land	cover	or	land	use	
could	be	treated	as	geocoded	data	attributed	to	spatial	domains	in	the	data	infrastructure	(Fig.	4).	This	
allows	then	for	keeping	higher	attribute	detail	within	the	limited	spatial	resolution	of	simulation	units.	

The	EPIC	model	(Wiliams	1995)	operates	at	daily	time	steps	and	outputs	can	be	aggregated	directly	by	
the	model	executive	to	monthly	or	yearly	balances.	Simulations	can	run	from	couple	of	years	to	over	
several	tens	or	hundreds	of	years	with	climate	change	impact	studies	(e.g.	Balkovic	et	al.	2014,	Folberth	
et	al.	2016,	Xiong	et	al.	2016).	It	can	reflect	gain	or	loss	in	the	SOC	pool	with	the	variability	of	key	
controls	driving	the	SOC	balance	and	provide	spatial	estimates	of	inter-annual	rates	of	SOC	pool	
dynamics	with	direct	link	to	management	measures	such	as	grazing,	crop	residua	management,	tillage	
operation	types	and	frequencies,	adding	of	organic	fertilizers	or	irrigation	(e.g.	Ma	et	al.	2016,	Folberth	
et	al.	2014,	Balkovic	et	al.	2013).	A	trade-off	is	always	necessary	with	simulating	SOC	balance	over	large	
regions	by	balancing	simplified	representation	of	the	real	landscape	system	complexity	in	gridded	data	
infrastructure	(Fig.	3,	Skalsky	et	al.	2008,	Balkovic	et	al.	2007)	with	necessary	detail	of	all	key	elements	of	
the	SOC	balance.	This	could	optionally	become	serious	limitation	of	the	gridded	EPIC	model	application	
for	many	practical	applications	strongly	focusing	on	site-level	elements/processes.	

	

Fig.	5	Data	flow	and	computational	infrastructure	of	EPIC	IIASA	global	gridded	crop	model	

EPIC	model	executive	can	be	used	for	free	for	all	non-commercial	applications	
(http://blackland.tamu.edu/models/epic/).	To	set-up	and	run	gridded	EPIC	model	trained	experts	are	
required	which	puts	the	most	potential	costs	of	this	quantification	approach	to	development	and	
operational	team.	If	computational	infrastructure	is	absent,	additional	costs	are	required	for	hardware,	
software,	and	the	maintenance.	Setting	up	the	data	infrastructure	for	the	model,	to	perform	calibration	
and	validation,	and	simulations	can	take	time	and	efforts	depending	on	the	coverage,	spatial	resolution,	



	

	

and	complexity	of	the	model	set-up.	The	most	time	consuming	part	being	commonly	gathering	and	
preprocessing	input	spatial	data	and	securing	spatial	and	thematic	consistency	of	all	modelling	inputs	
and	regional	calibration	of	the	key	processes.	

Gridded	version	of	EPIC	model	as	implemented	at	IIASA	uses	distributed	computational	environment	
with	paralel	computation	(Fig.	5).	This	solution	is	supported	with	shared	data	storage	environment	and	
GIS	and	database	softwer	for	input/output	processing.	Partly	paralelised	computation	is	possible	also	
with	using	single	computer	but	this	having	limitations	in	number	of	simulations	per	time	unit	and/or	
number	of	simulation	dimensions	defined	by	climate	or	crop	management	scenarios.	Development	of	
input/output	communication	interface	translating	between	the	database	and	the	input/output	data	
format	required	by	the	model	must	be	set	prior	to	run	the	gridded	simulations	(e.g.	VBA	codes	
implemented	with	SQL	database,	Fig.	5).	
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